N-S EQs
examples

https://www.youtube.com/watch?v=xLQNgwPUuN4

https://www.youtube.com/watch?v=pVLCmT5Ikw4&t

=17s


https://www.youtube.com/watch?v=xLQNqwPUuN4
https://www.youtube.com/watch?v=pVLCmT5lkw4&t=17s

Development of Navier-Stokes equation

e Derived by Claude-Louis-Marie Navier in 1827,

* and independently by Siméon-Denis Poisson
in 1831.

— Their motivations of the stress tensor were based
on what amounts to a molecular view of how
stresses are exerted by one fluid particle against
another.

e Later, Barré de Saint Venant (in 1843)

* George Gabriel Stokes (in 1845) derived the equation
starting with the linear stress rate-of-strain argument.



Development of Navier-Stokes equation

Louis Marie Henri Navier (1827) George Gabriel Stokes (1845)




The Development of the Equation

Bernoulli adapted methods of calculus to
analyze fluid motion when subjected to
various forces.

Euler formulated a set of equations, which
combined solutions describe precisely the
motion of a viscosity-free fluid.

Navier amended Euler’s equations to
account for viscosity.

Stokes rediscovered Navier’s equations,
with proper mathematical reasoning.



N-S eqs

 Newtonian, constant viscosity and
constant density
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Local ‘Temporal’
Acceleration: velocity
change with time

Convective Acceleration: velocity change with
position — following the motion



Continuity equation




N-S Egs — Convective Acceleration

Though the flow may be steady
(time-independent), the fluid
decelerates as it moves down the
diverging duct (assuming
incompressible or subsonic
compressible flow), hence there is
an acceleration happening over
position.



N-S eqs - Nonlinearity

* The nonlinearity is due to convective
acceleration

e convective acceleration is associated with the
change in velocity over position. Hence, any
convective flow, whether turbulent or not, will
involve nonlinearity.
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lectures in elementary fluid dynamics - University of Kentucky
Figure 3.9: Schematic of pressure and viscous stresses acting on a fluid element.



http://www.engr.uky.edu/~acfd/me330-lctrs.pdf

N-S eqs: Alternative form

* Incompressible
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Here, v is kinematic viscosity, the ratio of viscosity p to density p, as given earlier in Chap. 2, and
A is the second-order partial differential operator (given here in Cartesian coordinates)
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known as the Laplacian or Laplace operator (which is usually denoted by V= in the engineering and
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N-S eqs - Viscous Forces
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* Viscosity terms given above are associated with
molecular transport (i.e., diffusion) of
momentum.

* In general, second derivative termsin a
differential equation are usually associated with
diffusion, and in both physical and mathematical

contexts this represents smoothing, or mixing
process



High- and low-viscosity fluids
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gure 3.11: Comparison of velocity profiles in duct flow for cases of (a) high viscosity, and (b) low
scosity.
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Viscous Forces — Boundary Layers
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Figure 4.12: Steady, 2-D boundary-layer flow over a flat plate.



High viscosity fluids

2z * Velocity profile varies smoothly coming
5= Low Speed away from zero velocity at the wall, and
o reaching a maximum velocity in the
o High center of the duct.
Speed
—’"
""" Low Speed * Large viscosity: diffusion of viscous
S forces (time-rate of change of
momentum) arising from high shear
(a) stress near the solid surfaces far into the

flow field, thus smoothing the entire
velocity profile



low-viscosity fluids

* narrow region of low-speed flow

near the solid boundaries and a
e =\ wider region of nearly constant-
™ High velocity flow in the central region of
—;....‘ Speed Lc:w;Speed the duct
S o/ * speed on the centerline: is lower

(for the same mass flow rate) than

would be the high viscosity case.
(b)



Solution of N-S eqs

* No general analytical solution
— Millennium Prize Problems

* Analytical solutions for few simple flow
problems

e Complex flow problems:

— Experimental investigation (cost, time ) —
* may be used to validate numerical solutions

— Numerical solutions (magic alternative)



Millennium Prize Problems

Seven problems in mathematics that were stated by the Clay
Mathematics Institute in 2000.

A correct solution to any of the problems results in a US $1 million
prize being awarded by the institute to the discoverer(s).

The problems are Birch and Swinnerton-Dyer conjecture, Hodge
conjecture, Navier—Stokes existence and smoothness, P versus NP
problem, Poincaré conjecture, Riemann hypothesis, and Yang—Mills
existence and mass gap.

At present, the only Millennium Prize problem to have been solved
is the Poincaré conjecture, which was solved by the Russian
mathematician Grigori Perelman in 2003.
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Solution of N-S eqs

— Numerical solutions (magic alternative)

— http://www.engr.uky.edu/~acfd/lecturenotesl.ht
m|



The Strategy of CFD

Replace the continuous problem domain with a discrete

domain using a grid.

Continuous Domain

0<x<=1
ﬁ
¥=0 x=1

Coupled PDEs + boundary
conditions in continuous
variables

Discrete Domain

X = }{1, KZ' . ,}{N
%
- %
. N
Grid point

Coupled algebraic egs. in
discrete variables



CFD - discrete system

* The governing partial differential equations
and boundary conditions are defined in terms
of the continuous variables p, u, v, w etc

* The discrete system is a large set of coupled
algebraic equations in the discrete variables.



CFD: Grid - Mesh




Parallel flow|[edit]

Assume steady, parallel, one dimensional, non-convective
pressure-driven flow between parallel plates, the resulting
scaled (dimensionless) boundary value problem is:

d2udy2=-1;u(0)=u(1)=0.{\displaystyle {\frac
{dM2}uHdy~*{2}}}=-1;\quad u(0)=u(1)=0.} The boundary
condition is the no slip condition. This problem is easily
solved for the flow field:

u(y)=y-y22.{\displaystyle u(y)={\frac {y-y"2}{2}}.}
From this point onward more quantities of interest can be
easily obtained, such as viscous drag force or net flow rate.



https://en.wikipedia.org/w/index.php?title=Navier%E2%80%93Stokes_equations&action=edit&section=16
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/No_slip_condition
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Couette flow

flow between to infinite parallel plates spaced a
distance h apart in the y direction

) 4 —)-:

Figure 4.9: Couette flow velocity profile.



The Hagen—Poiseuille solution

* steady, incompressible, axisymmetric, fully-
developed, laminar flow, P1 > P2
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Figure 4.13: Steady, fully-developed pipe flow.



Ex: Possible flow field

e Use the continuity eq to check the possibility
of the following steady incompressible flow
with velocity field

ux,y,z)=2x+y+z,vix,y,z) =-y,w(x,y,z) =-z.



Ex: Local & convective accelerations -1

Find the local and convective
accelerations assuming a velocity field
with the 3 components:

u=x+y+z+t, v=x2y3zt, w=
exp(xyzt)

Solution

DU U
YU % oo
Di o '




Ex: Local & convective accelerations -2

0 = Du  du U .V

Dt Ot

Ay = Ut T Uy T Vly + WU, ,

Ay = VUt T UVy T VVUy + WU,

A = Wi+ UWg T+ VWy + Ww;.



Ex: Local & convective accelerations -3

=1 ik =4 u, =1, ¥, =1,
Vg = ;172y3:', vy = 2zy°2t vy = 3r°y“zt, UV, = ;L'2y3t,

wy = xyz exp(ryzt), wy = yztexp(ryzt),

w, = 2t exp(zyzt), w, = xyt exp(ryzt).



Actual Instantaneous values

A Actual Instantaneous Values of variables (u, v, w, p, ..)
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Averaging process of N-S eqs

Average velocity

Actual VQ/ l Fluctuating velocity

u=u+u
1 t+ At

u=— udt
At J,



Averaging process of N-S eqs

Actual Value Averaged Value

|




RANS: Reynolds Average Navier Stokes

RANS

N-S
egs




RANS
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Solving RANS

* RANS: Reynolds Average Navier Stokes

Computational

C F D Fluid Dynamics

Finite Finite
Element Volume
Method | | Method

FEM FDM

Finite

I\N SYS Difference

Method




Numerical Solutions

N-S eqs: Nonlinear PDEs ‘Partial Differential Equations’ + BCs + ICs

N

Split Domain into grid / Mesh

¥

Discretization at mesh nodes:
Finite Difference — Finite Element — Finite Volume

\ 4

Set of simultaneous linear algebraic eqs



CFD FVM Steps

Turbulence

Integral NS to RANS Model ?

l

Split the CV into small cells

!

Numerical Integration of RANS throughout the cells

)

Solve numerical equations for u,v,w and p with help of B.Cs




Grid / Mesh in 2-D




Discretization

partial derivative finite difference approximation type order
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Interior and Boundary Conditions

* |Interior: Shaded
* Boundary: White
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Finite Difference Method for Solving Elliptic PDE's

— Based on Boundary Conditions (BCs) and finite
ditference approximation to formulate system of
equations

— Use Gauss-Seidel to solve the system

20 2 H 0 Laplace Eq.
2t 27 —D(xky.m@‘ﬂ) Poisson Eq.
| 0x 0y




1. Discretize domain into grid of evenly spaced
points

2. For nodes where u is unknown:

w/ A x=Avy = h, substitute into main equation
3. Using Boundary Conditions, write, n*m
equations for

u(xi=1:m, yj=1:n) or n*m unknowns.

4. Solve this banded system



Laplace Eq

The Laplace molecule j*1

3 : i+1

If Ax = Ay then Eaper i erlh =Rl =4l =0



Laplace Eq

T=100°C

The temperature distribution

can be estimated by discretizing
T=100C the Laplace equation at 9 points

and solving the system of linear

equations.
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