
N-S Eqs
examples 

https://www.youtube.com/watch?v=xLQNqwPUuN4

https://www.youtube.com/watch?v=pVLCmT5lkw4&t
=17s

https://www.youtube.com/watch?v=xLQNqwPUuN4
https://www.youtube.com/watch?v=pVLCmT5lkw4&t=17s
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Development of  Navier-Stokes equation

• Derived by Claude-Louis-Marie Navier in 1827, 

• and independently by Siméon-Denis Poisson
in 1831. 

– Their motivations of the stress tensor were based 
on what amounts to a molecular view of how 
stresses are exerted by one fluid particle against 
another.

• Later, Barré de Saint Venant (in 1843) 

• George Gabriel Stokes (in 1845) derived the equation 
starting with the linear stress rate-of-strain argument. 
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Development of  Navier-Stokes equation

Louis Marie Henri Navier (1827) George Gabriel Stokes (1845)
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The Development of the Equation

• Bernoulli adapted methods of calculus to 
analyze fluid motion when subjected to 
various forces.

• Euler formulated a set of equations, which 
combined solutions describe precisely the 
motion of a viscosity-free fluid.

• Navier amended Euler’s equations to 
account for viscosity.

• Stokes rediscovered Navier’s equations, 
with proper mathematical reasoning.



N-S eqs
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• Newtonian, constant viscosity and 
constant density
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Local ‘Temporal’ 
Acceleration:  velocity 
change with time 

Convective Acceleration: velocity change with  
position – following the motion  



Continuity equation



N-S Eqs – Convective Acceleration

Though the flow may be steady 
(time-independent), the fluid 
decelerates as it moves down the 
diverging duct (assuming 
incompressible or subsonic 
compressible flow), hence there is 
an acceleration happening over 
position.



N-S eqs - Nonlinearity

• The nonlinearity is due to convective 
acceleration

• convective acceleration is associated with the 
change in velocity over position. Hence, any 
convective flow, whether turbulent or not, will 
involve nonlinearity. 



Stress Tensor  τij

τij
i indicates 

the face on 
which the 
stress is 
acting

j indicates 

the direction 
of the stress. 

lectures in elementary fluid dynamics - University of Kentucky 

ii

normal stress on face i

τij

http://www.engr.uky.edu/~acfd/me330-lctrs.pdf


N-S eqs: Alternative form

• Incompressible





N-S eqs - Viscous Forces

• Viscosity terms given above are associated with 
molecular transport (i.e., diffusion) of 
momentum. 

• In general, second derivative terms in a 
differential equation are usually associated with 
diffusion, and in both physical and mathematical 
contexts this represents  smoothing, or mixing 
process



High- and low-viscosity fluids

lectures in elementary fluid dynamics - University of Kentucky 

http://www.engr.uky.edu/~acfd/me330-lctrs.pdf


Viscous Forces – Boundary Layers



High viscosity fluids

• Velocity profile varies smoothly coming 
away from zero velocity at the wall, and 
reaching a maximum velocity in the 
center of the duct.

• Large viscosity: diffusion of viscous 
forces (time-rate of change of 
momentum) arising from high shear 
stress near the solid surfaces far into the 
flow field, thus smoothing the entire 
velocity profile



low-viscosity fluids

• narrow region of low-speed flow 
near the solid boundaries and a 
wider region of nearly constant-
velocity flow in the central region of 
the duct

• speed on the centerline: is lower 
(for the same mass flow rate) than 
would be the high viscosity case.



Solution of N-S eqs

• No general analytical solution
– Millennium Prize Problems

• Analytical solutions for few simple flow 
problems

• Complex flow problems: 
– Experimental investigation (cost, time ) –

• may be used to validate numerical solutions   

– Numerical solutions (magic alternative)



Millennium Prize Problems

• Seven problems in mathematics that were stated by the Clay 
Mathematics Institute in 2000. 

• A correct solution to any of the problems results in a US $1 million 
prize being awarded by the institute to the discoverer(s).

• The problems are Birch and Swinnerton-Dyer conjecture, Hodge 
conjecture, Navier–Stokes existence and smoothness, P versus NP 
problem, Poincaré conjecture, Riemann hypothesis, and Yang–Mills 
existence and mass gap. 

• At present, the only Millennium Prize problem to have been solved 
is the Poincaré conjecture, which was solved by the Russian
mathematician Grigori Perelman in 2003.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
https://en.wikipedia.org/wiki/Hodge_conjecture
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
https://en.wikipedia.org/wiki/Riemann_hypothesis
https://en.wikipedia.org/wiki/Yang%E2%80%93Mills_existence_and_mass_gap
https://en.wikipedia.org/wiki/Russians
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Grigori_Perelman


Solution of N-S eqs

– Numerical solutions (magic alternative)

– http://www.engr.uky.edu/~acfd/lecturenotes1.ht
ml



The Strategy of CFD

Replace the continuous problem domain with a discrete
domain using a grid.



CFD - discrete system 

• The governing partial differential equations 
and boundary conditions are defined in terms 
of the continuous variables p, u, v, w etc

• The discrete system is a large set of coupled 
algebraic equations in the discrete variables.



CFD:  Grid - Mesh



• Parallel flow[edit]
• Assume steady, parallel, one dimensional, non-convective 

pressure-driven flow between parallel plates, the resulting 
scaled (dimensionless) boundary value problem is:

• d 2 u d y 2 = − 1 ; u ( 0 ) = u ( 1 ) = 0. {\displaystyle {\frac
{d^{2}u}{dy^{2}}}=-1;\quad u(0)=u(1)=0.} The boundary 
condition is the no slip condition. This problem is easily 
solved for the flow field:

• u ( y ) = y − y 2 2 . {\displaystyle u(y)={\frac {y-y^{2}}{2}}.} 
From this point onward more quantities of interest can be 
easily obtained, such as viscous drag force or net flow rate.

https://en.wikipedia.org/w/index.php?title=Navier%E2%80%93Stokes_equations&action=edit&section=16
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/No_slip_condition




Couette flow

flow between to infinite parallel plates spaced a 
distance h apart in the y direction



The Hagen–Poiseuille solution

• steady, incompressible, axisymmetric, fully-
developed, laminar flow, P1 > P2



Ex: Possible flow field

• Use the continuity eq to check the possibility 
of the following steady incompressible flow 
with velocity field

u(x, y, z) = 2x + y + z , v(x, y, z) = −y , w(x, y, z) = −z .



Ex: Local & convective  accelerations -1 

Find the local and convective  
accelerations  assuming a velocity field 
with the 3 components:   

u = x + y + z + t ,  v = x2y3zt ,  w = 
exp(xyzt)

Solution 



Ex: Local & convective  accelerations -2



Ex: Local & convective  accelerations -3



Actual Instantaneous values 

Actual Instantaneous  Values of variables (u, v, w, p, ..)



Averaging process of N-S eqs

Actual velocity
Average velocity

Fluctuating velocity



Averaging process of N-S eqs

Averaged Value



RANS: Reynolds Average Navier Stokes

RANSN-S 
eqs Averaging



RANS

Reynolds  Stress



Solving RANS

• RANS: Reynolds Average Navier Stokes

Finite 
Element 
Method

Finite 
Difference 

Method

Finite 
Volume 
Method

Computational 
Fluid Dynamics



Numerical Solutions

N-S eqs: Nonlinear PDEs ‘Partial Differential Equations ’ + BCs + ICs 

Discretization at mesh nodes: 
Finite Difference – Finite Element – Finite Volume

Split Domain into grid / Mesh

Set of simultaneous linear algebraic eqs



CFD FVM Steps

Turbulence 
Model ?



Grid / Mesh in 2-D  



Discretization 



Interior and Boundary Conditions 

• Interior: Shaded

• Boundary: White



Finite Difference Method for Solving Elliptic PDE's



1. Discretize domain into grid of evenly spaced 
points
2. For nodes where u is unknown:
w/ Δ x = Δ y = h, substitute into main equation
3. Using Boundary Conditions, write, n*m 
equations for
u(xi=1:m, yj=1:n) or n*m unknowns.
4. Solve this banded system



Laplace Eq



Laplace Eq




